Gymbo
|
Gradient Descent Optimizer for Symbolic Path Constraints. More...
#include <gd.h>
Public Member Functions | |
GDOptimizer (int num_epochs=100, float lr=1.0, float eps=1.0, float param_low=-10.0, float param_high=10.0, bool sign_grad=true, bool init_param_uniform_int=true, int seed=42) | |
Constructor for GDOptimizer. More... | |
bool | eval (std::vector< Sym > &path_constraints, std::unordered_map< int, float > params) |
Evaluate if path constraints are satisfied for given parameters. More... | |
bool | solve (std::vector< Sym > &path_constraints, std::unordered_map< int, float > ¶ms, bool is_init_params_const=true) |
Solve path constraints using gradient descent optimization. More... | |
Public Attributes | |
int | num_epochs |
Maximum number of optimization epochs. More... | |
float | lr |
Learning rate for gradient descent. More... | |
float | eps |
The smallest positive value. More... | |
float | param_low |
Lower bound for parameter initialization. More... | |
float | param_high |
Upper bound for parameter initialization. More... | |
bool | sign_grad |
bool | init_param_uniform_int |
bool | contain_randomized_vars |
int | seed |
Random seed for initializing parameter values. More... | |
int | num_used_itr |
Number of used iterations during optimization. More... | |
Gradient Descent Optimizer for Symbolic Path Constraints.
The GDOptimizer
class provides functionality to optimize symbolic path constraints by using gradient descent. It aims to find parameter values that satisfy the given path constraints, making them true or non-positive.
Sym
type, and path constraints are a vector of Sym
objects.
|
inline |
Constructor for GDOptimizer.
num_epochs | Maximum number of optimization epochs (default: 100). |
lr | Learning rate for gradient descent (default: 1). |
eps | The smallest positive value of the target type (default: 1.0). |
param_low | Lower bound for parameter initialization (default: -10). |
param_high | Upper bound for parameter initialization (default: 10). |
sign_grad | If true, use sign gradient descent. Otherwise, use standard gradient descent. (default true). |
init_param_uniform_int | Flag indicating whether initial parameter values are drawn from the uniform int distribution or uniform real distribution (default true). |
seed | Random seed for initializing parameter values (default: 42). |
|
inline |
Evaluate if path constraints are satisfied for given parameters.
This function checks if the given path constraints are satisfied (non-positive) for the provided parameter values.
path_constraints | Vector of symbolic path constraints. |
params | Map of parameter values. |
true
if all constraints are satisfied; otherwise, false
.
|
inline |
Solve path constraints using gradient descent optimization.
This function attempts to find parameter values that satisfy the given path constraints by using gradient descent optimization. It iteratively updates the parameters until the constraints are satisfied or the maximum number of epochs is reached.
path_constraints | Vector of symbolic path constraints. |
params | Map of parameter values (will be modified during optimization). |
is_init_params_const | Flag indicating whether initial parameter values are constant. |
true
if the constraints are satisfied after optimization; otherwise, false
. bool gymbo::GDOptimizer::contain_randomized_vars |
If true, use aeval and agrad. Otherwise, use eval and grad.
float gymbo::GDOptimizer::eps |
The smallest positive value.
bool gymbo::GDOptimizer::init_param_uniform_int |
Flag indicating whether initial parameter values are drawn from the uniform int distribution or uniform real distribution (default true).
float gymbo::GDOptimizer::lr |
Learning rate for gradient descent.
int gymbo::GDOptimizer::num_epochs |
Maximum number of optimization epochs.
int gymbo::GDOptimizer::num_used_itr |
Number of used iterations during optimization.
float gymbo::GDOptimizer::param_high |
Upper bound for parameter initialization.
float gymbo::GDOptimizer::param_low |
Lower bound for parameter initialization.
int gymbo::GDOptimizer::seed |
Random seed for initializing parameter values.
bool gymbo::GDOptimizer::sign_grad |
If true, use sign gradient descent. Otherwise, use standard gradient descent. (default true).