2.1.5. aijack.defense.kanonymity package#

2.1.5.1. Submodules#

2.1.5.2. aijack.defense.kanonymity.wrapper module#

class aijack.defense.kanonymity.wrapper.Mondrian(k=3)[source]#

Bases: object

Implementation of K. LeFevre, D. J. DeWitt and R. Ramakrishnan, ‘Mondrian Multidimensional K-Anonymity,’ 22nd International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA, 2006, pp. 25-25, doi: 10.1109/ICDE.2006.101. Our implementation is based on Nuclearstar/K-Anonymity (Nuclearstar/K-Anonymity)

anonymize(df, quasiid_columns, sensitive_column, is_continuous_map, ignore_unused_features=True)[source]#
get_final_partitions()[source]#
aijack.defense.kanonymity.wrapper.convert_anodataframe_to_pddataframe(ano_df, columns, is_continuous_map)[source]#
aijack.defense.kanonymity.wrapper.convert_pddataframe_to_anodataframe(pd_df, is_continuous_map)[source]#

2.1.5.3. Module contents#

class aijack.defense.kanonymity.Mondrian(k=3)[source]#

Bases: object

Implementation of K. LeFevre, D. J. DeWitt and R. Ramakrishnan, ‘Mondrian Multidimensional K-Anonymity,’ 22nd International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA, 2006, pp. 25-25, doi: 10.1109/ICDE.2006.101. Our implementation is based on Nuclearstar/K-Anonymity (Nuclearstar/K-Anonymity)

anonymize(df, quasiid_columns, sensitive_column, is_continuous_map, ignore_unused_features=True)[source]#
get_final_partitions()[source]#