Source code for aijack.defense.kanonymity.wrapper
import pandas as pd
from aijack_cpp_core import DataFrame as AnoDataFrame
from aijack_cpp_core import Mondrian as MondrianCore
[docs]def convert_pddataframe_to_anodataframe(pd_df, is_continuous_map):
    columns = pd_df.columns.tolist()
    ano_df = AnoDataFrame(columns, is_continuous_map, 0)
    for col in columns:
        if is_continuous_map[col]:
            ano_df.insert_continuous_column(col, pd_df[col].tolist())
        else:
            ano_df.insert_categorical_column(col, pd_df[col].tolist())
    return ano_df 
[docs]def convert_anodataframe_to_pddataframe(ano_df, columns, is_continuous_map):
    data_continuous = ano_df.get_data_continuous()
    data_categorical = ano_df.get_data_categorical()
    df = pd.DataFrame()
    for col in columns:
        if is_continuous_map[col]:
            df[col] = data_continuous[col]
        else:
            df[col] = data_categorical[col]
    return df 
[docs]class Mondrian:
    """Implementation of K. LeFevre, D. J. DeWitt and R. Ramakrishnan,
    'Mondrian Multidimensional K-Anonymity,' 22nd International Conference on Data Engineering
    (ICDE'06), Atlanta, GA, USA, 2006, pp. 25-25, doi: 10.1109/ICDE.2006.101. Our implementation
    is based on Nuclearstar/K-Anonymity (https://github.com/Nuclearstar/K-Anonymity)
    """
    def __init__(self, k=3):
        self.api = MondrianCore(k)
[docs]    def get_final_partitions(self):
        return self.api.get_final_partitions() 
[docs]    def anonymize(
        self,
        df,
        quasiid_columns,
        sensitive_column,
        is_continuous_map,
        ignore_unused_features=True,
    ):
        ano_df = convert_pddataframe_to_anodataframe(df, is_continuous_map)
        ano_anonymized_df = self.api.anonymize(
            ano_df, quasiid_columns, sensitive_column
        )
        pd_df_anonymized = convert_anodataframe_to_pddataframe(
            ano_anonymized_df, quasiid_columns + [sensitive_column], is_continuous_map
        )
        if ignore_unused_features:
            return pd_df_anonymized
        else:
            pd_df_unused_and_sensitive_columns = df[
                list(set(df.columns) - set(quasiid_columns + [sensitive_column]))
            ]
            idx = sum(self.get_final_partitions(), [])
            result_df = pd.concat(
                [
                    pd_df_anonymized,
                    pd_df_unused_and_sensitive_columns.iloc[idx],
                ],
                axis=1,
            )
            result_df.index = idx
            return result_df